
Frohe Weihnachten
...und alles Gute für 2021 wünscht das D4Dairy team!
Cookies helfen uns bei der Bereitstellung unserer Website. Durch die Nutzung der Website erklären Sie sich damit einverstanden, dass wir Cookies setzen.
...und alles Gute für 2021 wünscht das D4Dairy team!
von Kristina Linke
Die Probenahme und Datenaufzeichnung auf den 100 D4Dairy-Betrieben, die am Projekt 2.5 teilnahmen, wurde von Mai 2019 bis September 2020 durchgeführt.
Das Video zeigt einige Schritte der Futterprobenahme, der Futterbewertung im Betrieb und der Datenaufzeichnung.
von Kristina Linke
D4Dairy Doktorandin Lisa Maria Rienesl gewann einen Preis für die beste Präsentation beim 28. internationalen Symposium ‘Animal Science Days’ für den Vortrag “Prediction of pregnancy state from milk mid infrared (MIR) spectroscopy in dairy cows”.
D4Dairy gratuliert dazu ganz herzlich!
von Kristina Linke
Um den 8. Juli wurde ein zweiphasiger Beobachterabgleich mit allen LKV Mitarbeiterinnen und Mitarbeitern, die Daten auf den D4Dairy Betrieben erheben, durchgeführt.
D4Dairy hat das übergeordnete Ziel, mittels eines datengestützten, vernetzten Informationssystems unter Ausschöpfung der Möglichkeiten moderner Technologien (Mid-Infra-Red Spektren, Genominformation, …) und fortgeschrittener Datenanalysen eine digitale Unterstützung des Managements am Milchviehbetrieb aufzubauen und damit eine weitere Verbesserung der Tiergesundheit, des Tierwohls und der Produktqualität zu erreichen.
Aufbauend auf dem COMET-Projekt ADDA wurde das bestehende Netzwerk entlang der Wertschöpfungskette Milch um Technologieanbieter und Wissenschaftspartner mit dem Fokus auf neuen Technologien zum D4Dairy Konsortium erweitert.
Die Subprojekte von D4Dairy gliedern sich in zwei primäre Themenfelder:
In den letzten Jahren hat die Erzeugung, Verarbeitung und Speicherung von Daten in Milchviehbetrieben dramatisch zugenommen. Um eine sinnvolle Nutzung dieser Daten zu ermöglichen, liegt der Schwerpunkt in Area 1 auf der Integration der in den Betrieben generierten Daten (Daten von gesundheitsbezogenen Sensoren, automatischen Fütterungssystemen, Antibiotikaeinsatz, Stallklimadaten,..) bzw. der Interoperabilität der in den Betrieben eingesetzten Systemen und der Prozessentwicklung und -optimierung mit dem Ziel Entscheidungsunterstützungsinstrumente zu generieren. Die Projekte in diesem Bereich umfassen Arbeiten zu Aspekten der Qualitätssicherung, des Datenaustausches, des Datenschutzes als auch der Erforschung von Zusammenhängen von verschiedenen Merkmalen. Aufbauend auf den Ergebnissen und Erkenntnissen aus den verschiedenen Forschungsprojekten werden Werkzeuge für Landwirte und Tierärzte zur Entscheidungsunterstützung entwickelt. Verschiedene Strategien zur Reduzierung des Risikos einer Antibiotikaresistenz sind auch ein wichtiger Bestandteil dieser Area. Außerdem laufen in Area 1 alle Ergebnisse aus D4Dairy zusammen, da hier der Informations- und Wissenstransfer erfolgt, sowie Studien im sozialen Kontext (Wissenstransfer, Akzeptanz) durchgeführt werden.
P1.1 befasst sich mit der Datenvernetzung zwischen den Projektpartnern und hat das Ziel, eine erweiterte Datengrundlage für die Forschungsfragen und die Entwicklungen verbesserter Anwendungen für Landwirte zu schaffen.P1.1 erfasst Ist-Zustand und Bedürfnisse der verschiedenen Stakeholder (Landwirte/Technikanbieter/Organisationen/…) im Bereich der Digitalisierung in der Milchproduktion. Ein Fokus liegt dabei auch auf der Arbeitswirtschaft und Prozessqualität. Ein weiteres Arbeitspaket klärt Fragen des Schutzes von Daten und geistigen Eigentums, so dass die entwickelten Datenaustauschverfahren und Anwendungen die rechtlichen und wirtschaftlichen Anforderungen der Partner erfüllen.P1.1 entwickelt die technischen Voraussetzungen für den automatisierten Datenaustausch zwischen den Projektbeteiligten. Dies umfasst den Routinedatenaustausch zwischen den RDV-Datenbanken und den öffentlichen und Industriepartnern sowie den Austausch erweiterter Datensätze für spezifische Forschungsfragen. Neue IT-Konzepte für die Sicherstellung der Datenqualität von Sensorsystemen und die effiziente Organisation von Datennutzungs- und –weitergaberechten werden untersucht.Für neu etablierte Anwendungen erfolgt eine intensive Testphase auf Pilotbetrieben. Die Erkenntnisse aus D4Dairy fließen in Konzepte für künftige Weiterentwicklung neuer Merkmale und Dienstleistungen ein.
Die Verfügbarkeit integrierter und neuartiger Daten in Kombination mit fortschrittlichen Analysemethoden ermöglicht eine frühere Erkennung des Auftretens potenzieller Gesundheitsprobleme in Milchviehbeständen und ermöglicht so ein zeitnäheres Eingreifen. D4Dairy zielt darauf ab, Möglichkeiten für datengesteuerte Strategien zur Verbesserung der Gesundheit zu entwickeln und die Landwirte bei der Nutzung solcher Strategien und Instrumente zu unterstützen, damit sie aufkommende Gesundheits- und Tierwohlprobleme rechtzeitig vorbeugen oder darauf reagieren können.
Daten aus digitalen Technologien wie Daten aus AMS (Automatischen Melksystemen), Sensoren und Fütterungssystemen werden genutzt, um neue Merkmale abzuleiten. Das Projekt wird sich mit der Definition von Merkmalen und deren Beziehung zu anderen interessanten Merkmalen sowie mit der Auswertung von Sensordaten zur Früherkennung von Krankheiten mit Schwerpunkt Lahmheit, aber auch Ketose und anderen befassen. Konzepte zur Optimierung von Fütterungsprozessen sind ein weiterer Arbeitsschwerpunkt dieses Projektes. Die Ergebnisse der anderen Projekte innerhalb von D4Dairy werden in die in D4Dairy entwickelten Werkzeuge zur digitalen Entscheidungsunterstützung einfließen.
Das Projekt 1.3 befasst sich mit der Harmonisierung der Antibiotika Empfindlichkeitstests (AST) für Mastitispathogene (1.3.1), der Entwicklung von Empfehlungen für Trockenstellstrategien (1.3.2) sowie der Entwicklung von Strategien zur Verbesserung der Kälbergesundheit und der Rindfleischqualität (1.3.3).
Ziel des Teilprojektes 1.3.1, in dem Labore aus ganz Österreich zusammenarbeiten, ist es, die Methodik zu standardisieren, die Vergleichbarkeit der Resistenzdaten zu ermöglichen und die Ergebnisse dieser Tests in den zentralen Rinderdatenverbund zu integrieren. AST-Daten sind dann für LandwirtInnen und TierärztInnen zugänglich und beurteilbar. In Teilprojekt 1.3.2. wird in Zusammenarbeit mit einer Molkerei und führendem Milchverarbeiter ein Entscheidungsinstrument für TierärztInnen entwickelt, um LandwirtInnen hinsichtlich der besten Trockenstellstrategie für ihren Betrieb optimal zu beraten. Im Teilprojekt 1.3.3. werden die Auswirkungen der Verfütterung von sog. „Sperrmilch“ (Milch mit Antibiotikarückständen) an Kälber und der Einfluss dieser Praxis auf die Entwicklung antimikrobiell resistenter Bakterien auf landwirtschaftlichen Betrieben untersucht, um Alternativen dazu zu etablieren.
Die Digitalisierung und Anwendung neue Sensor-Technologien sowie eine zunehmende Automatisierung nehmen in der modernen Landwirtschaft immer weiter zu und sind einer der größten Wachstumsbereiche in diesem Sektor. Die Nutzung digitaler Technologien verändert zunehmend die Art und Weise, wie landwirtschaftliche Betriebe geführt werden und stellt auch Berater und Tierärzte vor neue Herausforderungen. Für alle beteiligten Berufsgruppen bietet die Digitalisierung neue Perspektiven und Möglichkeiten, so dass ein entsprechendes Wissen essentiell für ihre Nutzung ist. Die Erwartungshaltung der Konsumenten und soziale Akzeptanz hinsichtlich der eingesetzten Technologien vor allem in der tierhaltenden Landwirtschaft spielt eine nicht zu unterschätzende Rolle für das zukünftige Bild der Landwirtschaft in der Öffentlichkeit. Wir wollen in diesem Projekt mehr über die Akzeptanz moderner Technologien in der Milchwirtschaft bei allen beteiligten Gruppen erfahren und die Ergebnisse und weitere hilfreiche Informationen über verschiedene Informationskanäle verbreiten.
Funktionale Merkmale, insbesondere Gesundheitsmerkmale, haben im Nutztierbereich in den vergangenen Jahren zunehmend an Bedeutung gewonnen. In diesem Zusammenhang bieten sich für das Herden-Management und die Zucht durch die Kombination von Daten aus der Automatisierung und Sensoren bzw. anderen neuen Merkmalen mit modernen, hochentwickelten Analysemethoden neue Möglichkeiten. Area 2 von D4Dairy umfasst die gesamte Bandbreite der Erfassung und Validierung neuer Merkmale, die Kombination von neuen mit bereits bestehenden Merkmalen sowie die Untersuchung möglicher Risikofaktoren hinsichtlich der Tiergesundheit mit Hilfe von neuen Methoden bis hin zur Implementierung, z.B. im Rahmen von Optimierungs- und Zuchtstrategien. Dies ermöglicht die Verbesserung der Tiergesundheit und des Tierwohls. Durch die Verbesserung von beiden Merkmalskomplexen, Fitness und Leistung, können Kosten reduziert und Erträge gesteigert werden, was in Folge zu einer Erhöhung der Profitabilität des Milchviehsektors beiträgt.
Viele Tierkrankheiten entstehen durch das Zusammenspiel von genetischen und umweltbedingten Risikofaktoren. Die frühzeitige Erkennung und verbesserte Überwachung dieser Risikofaktoren kann erheblich zur Tiergesundheit und zum Tierschutz beitragen. In diesem Projekt werden die Risikofaktoren für die Entwicklung von Krankheiten untersucht und Parameter für die Früherkennung unter Verwendung neuartiger wissenschaftlicher Ansätze wie z.B. Big Data Analysen entwickelt.
Unser Ziel ist es, ein Modell zu entwickeln, das uns ermöglicht, zu entschlüsseln, wie verschiedene Genetik und Umwelt bedingte Faktoren sowie deren Wechselwirkungen zur Tiergesundheit und zum Tierschutz beitragen. Diese Modelle werden basierend auf einer umfassenden Datengrundlage, die zeitaufgelöste Phänotypen und Umweltinformationen als auch genetische Informationen für Rinder enthält, entwickelt. Das Projekt befasst sich mit der Identifizierung von frühzeitigen prognostischen Krankheitsmarkern. Erwartete Ergebnisse sind aussagekräftigere Parameter für das Herdenmanagement und die Zucht.
Mittelinfrarotspektroskopie (MIR) ist das Routineverfahren der Milchanalyse. Wurde bis vor kurzem damit nur die Konzentration von Standardinhaltsstoffen wie Fett, Eiweiß und Laktose bestimmt, können mittlerweile damit auch geringer konzentrierte Inhaltstoffen wie z.B. Fettsäuren, Keton-Körper und andere Zeigerstoffe wie Lactoferrin hinreichend genau gemessen werden. Neueste Untersuchungen konnten zeigen, dass der Gesundheits- und Ernährungszustand von Milchkühen über die biochemische Zusammensetzung der Milch abgebildet werden kann. Milch-MIR-Spektroskopie stellt damit eine günstige Methode dar, Gesundheitsprobleme im Milchkuhbestand rechtzeitig zu erkennen. Das MIR-Projekt hat zum Ziel neue, robuste Milch-MIR-Vorhersagemodelle mit Hilfe einer großen Zahl von Routine-Milchproben und Veterinärdiagnosen zu entwickeln und zu überprüfen. Die beteiligten Forschungspartner können dabei auf die Expertise sowie die Daten der im Verband EMR (European Milk Recording) zusammengeschlossenen europäischen Kontrollverbände zurückgreifen. Zusätzlich werden durch chemische Referenzanalysen die bestehenden MIR-Modelle für Milchinhaltsstoffe verbessert.
Ziel ist es den Milchbauern neue, verlässliche Werkzeuge für das Herdenmanagement zur Hand zu geben mit denen sie den wachsenden Anforderungen hinsichtlich Leistung, Wirtschaftlichkeit und Tierwohl nachhaltig begegnen können.
Das übergeordnete Ziel dieses Projektes ist die Förderung von Tiergesundheit, Wohlergehen, Produktivität und potenziell auch Produktqualität durch eine verbesserte Erfassung von Umweltinformationen und betriebsbezogenen Daten. Dieses Ziel soll (1) durch die Verwendung kommerziell erhältlicher Sensoren und Netzwerke erreicht werden, um ein integriertes On-farm-Monitoring für verschiedene Merkmale des Stallklimas und der Luftqualität zu erhalten. Die Projektgruppe wird dafür (2) mit Betriebsleiter*innen zusammenarbeiten, um produktionsbezogene Daten zu erfassen und auf diesen beruhende Optimisierungsstrategien zu entwickeln. Zusätzlich hat das Projekt zum Ziel, (3) praxistaugliche und kostengünstige Sensoranwendungen in der Milcherzeugung zu entwickeln und (4) Umweltfaktoren und die entsprechenden Reaktionen der Tiere zu modellieren und daraus Algorithmen zur Vorhersage von Leistungseinbußen aufgrund von suboptimalem Stallklima und Luftqualität abzuleiten. Die Studie wird in enger Zusammenarbeit von Milchviehhalter*innen, Unternehmen (Pessl Instruments und AgHiTech), wissenschaftlichen Einrichtungen (BOKU, Vetmeduni) and Dachorganisationen und Verbänden (ZuchtData, LKV) durchgeführt.
Im Projekt werden Big Data Ansätze angewendet, um aus komplexen Datenquellen einfach interpretierbare Managementanweisungen zu generieren. Neben der Nutzung für das Herdenmanagement können diese Datenquellen natürlich auch für züchterische Zwecke genutzt werden.
Da für züchterische Nutzung weniger die leichte Interpretierbarkeit, sondern neben der Wiederholbarkeit vor allem die Korrelation mit dem Zielmerkmal von Interesse ist, müssen möglicherweise modifizierte Phänotypen etabliert werden.
Diese neuen Merkmale sollen für den Bereich Stoffwechsel, Euter- und Klauengesundheit entwickelt werden. Die notwendigen Arbeiten umfassen die Schätzung von Heritabilitäten und genetischen Korrelationen, die Etablierung einer konventionellen und genomischen Zuchtwertschätzung sowie die Suche nach interessanten Genorten über genomweite Assoziationsstudien.
Mykotoxine - sekundäre Metabolite von Schimmelpilzen - weisen eine Vielzahl von gesundheitsgefährdenden Eigenschaften auf und verursachen weltweit beträchtlichen wirtschaftlichen Schaden in der Tierproduktion. Das Auftreten von Mykotoxinen im Futter österreichischer Milchviehbetriebe sowie deren Auswirkung auf die Gesundheit und Fruchtbarkeit ist weitgehend unbekannt.
Daher führen wir eine umfangreiche Feldstudie durch, in welcher das Futter österreichischer Milchviehbetriebe auf mehr als 400 Pilzmetabolite analysiert wird. Die Ergebnisse werden mit Gesundheits- und Leistungsdaten der Betriebe abgeglichen, um potentielle Zusammenhänge zu erkennen. Da das Pansenmikrobiom, welches für die Tiergesundheit eine wichtige Rolle spielt, möglicherweise auf eine Mykotoxin-Kontamination reagiert, nutzen wir ein in-vitro Modell (rumen simulation technique, RUSITEC), um mittels Hochdurchsatzsequenzierung den Einfluss ausgewählter Mykotoxine auf das Pansenmikrobiom zu bestimmen.
Diese Ergebnisse werden dazu beitragen, die Rolle von Mykotoxinen für die Gesundheit von Milchkühen besser verstehen zu können. Da der Klimawandel die Mykotoxin-Kontamination in Futtermitteln beeinflusst, werden Erkenntnisse über die Dauer dieses Projekts hinweg von Bedeutung sein.
Um diese komplexen und interdisziplinären Herausforderungen in Angriff nehmen und erfolgreich bewältigen zu können, knüpft D4Dairy ein international wettbewerbsfähiges, transdisziplinäres Netzwerk aus in- und ausländischen Universitäten, Kompetenzzentren und Forschungseinrichtungen, sowie Unternehmen entlang der Wertschöpfungskette Milch (Landwirte, Zuchtorganisationen, Milchverarbeiter, Tiergesundheitsdienste, Interessensvertretungen u.a.) und – last, but not least – nationalen und internationalen Technologieanbietern (Sensoren, Fütterung, Klimamessung, Datenverarbeitung). Das Konsortium besteht aus 31 Wirtschaftspartnern und 13 Wissenschaftspartnern.
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
weiter
Dr. Christa Egger-Danner
ZuchtData EDV-Dienstleistungen GmbH
Dresdner Straße 89/B1/18
1200 Wien
Austria